Special Event

LIGO, Gravitational Waves, and Colliding Black Holes

LIGO and the LIGO Result

Peter S. Shawhan

Gravitational Wave Theory and Black Hole Binaries 

John G Baker

Gravitational Wave Counterparts, the Fermi Mission and Beyond

Julie McEnery


Videography by Nerine and Robert Clemenzi and Onyx Lee, Edited by Nerine Clemenzi
Copyright © Philosophical Society of Washington.  All rights reserved.

Sponsored by The Policy Studies Organization
In Cooperation with the American Public University

About the Lecture:

LIGO, Gravitational Waves, and Colliding Black Holes

Three scientists will discuss the recent, historical detection of gravitational waves created by the stupendous collision of two black holes. The discussion will cover the LIGO instruments that detected the waves, the theoretical understanding of gravitational waves, and the cosmic events that can warp the fabric of space-time with sufficient magnitude to propagate across the universe and be detected here on Earth, and the ways in which these events can be detected. Plans for future and more sensitive detectors will be discussed, and how the new field of gravitational wave astronomy is likely to increase our understanding of the universe and influence the fields of fundamental physics and cosmology.


1. The Detection of Gravitational Waves - The Very First Chirp

Peter S. Shawhan

About the Lecture

Gravitational WavesGravitational WavesThe quest to detect gravitational waves -- predicted by Albert Einstein's general theory of relativity, but dismissed by Einstein as an undetectably small effect -- began more than 50 years ago at the University of Maryland with modest equipment. Clever ideas, new technologies, and the patient faith of scientists and the National Science Foundation led to the construction of the Laser Interferometer Gravitational-wave Observatory (LIGO), twin sites with exquisitely sensitive detectors capable of measuring extremely tiny changes in the geometry of spacetime itself. But what astrophysical systems exist out there to produce these signals, and how rare are they? The initial LIGO detectors worked as designed but did not yield any clear signal.

A long-awaited upgrade, Advanced LIGO, began collecting science-quality data with even greater sensitivity in September 2015. Almost before we knew it, the detectors captured a breathtaking signal, remarkable both in its clarity and in what it tells us about its source. The scientific team labored in secrecy for months to fully validate the signal and analyze its implications before announcing it to the world on February 11. I will share an insider's view of the science, the methods, and the findings from this sensational event.

About the Speaker

Peter ShawhanPeter Shawhan attended Washington University in St. Louis as an Arthur Holly Compton Fellow and earned an A.B. (summa cum laude) in 1990. He won an NSF Graduate Research Fellowship and used it at the University of Chicago, where he earned an M.S. in 1992 and Ph.D. in 1999 with a dissertation from the KTeV particle physics experiment at Fermilab. He then went to Caltech as a Millikan Prize Postdoctoral Fellow, switching research fields to work on the relatively young LIGO Project. After that fellowship plus four more years at Caltech as a Senior Scientist, Shawhan joined the University of Maryland faculty in 2006. He is currently Associate Professor and Associate Chair for Graduate Education in the Physics Department, as well as a Fellow of the Joint Space-Science Institute.

Shawhan has held several leadership roles in LIGO, including co-chair of the Burst Analysis Working Group and membership on the LIGO Scientific Collaboration Executive Committee and the LIGO Program Advisory Committee. He serves on the Editorial Board of the journal Classical and Quantum Gravity and is currently the Chair-Elect of the American Physical Society's Division of Gravitational Physics.


2. The Music of General Relativity - Listening to Black Holes

John Baker

About the Lecture

General RelativityIt has now been a century since Einstein published his theory of general relativity and first described gravitational waves. Only much more recently have we come to understand those predictions in sufficient detail to fully interpret the first gravitational-wave observations of merging black holes. The detailed predictions of Einstein's theory provide the foundation for interpreting our new hearing-like sense of the universe provided by gravitational-wave astronomy.

Black hole mergers, whether they are mergers of the collapsed cores of giant stars or mergers of the gargantuan supermassive black holes at the centers of galaxies, are believed to be the most powerful astronomical cataclysms. The whirling dance of the black holes on their way to merger release as much energy as the light from all the stars in the sky in the form of gravitational-waves. Those waves in turn provide a detailed record of choreography of the merger and thus also reveal the characteristics of the black holes. I will discuss our theoretical understanding of black hole mergers and their predicted gravitational-wave signatures. The observation of GW150914 provides our first direct evidence of these systems and the strong gravity phenomena involved in their mergers. This observation, though, is just our first step toward the richer understanding of gravity and the dynamic world of dark objects in the universe which gravitational-wave astronomy can provide.

About the Speaker

John BakerJohn Baker is an astrophysicist in the Gravitational Astrophysics Laboratory at NASA's Goddard Space Flight Center in Greenbelt, MD. He received his PhD in Physics from the Pennsylvania State University in 1999 for mathematical work on the end-state of black hole mergers. Subsequently he held postdoctoral appointments at the Albert Einstein Institute in Germany where he developed facility with numerical relativity techniques, and at NASA. He joined NASA as a civil servant astrophysicist in 2004. In 2005-6 his team developed computational techniques which finally enabled effective numerical simulations of black hole mergers and computed the first predictions for the gravitational-wave signals from those events. For this work, he later received the John C. Lindsay Memorial Award.

Since that time John has continued to explore black hole merger phenomenology through numerical simulations, recently also including the dynamics of magnetized gasses which may happen to be present during the merger. His work has also expanded to include gravitational- wave data analysis techniques and aspects of gravitational-wave mission design in support of a future space-based gravitational-wave instrument. Currently John serves on NASA's L3 Study Team helping to explore a role for NASA in the European Space Agency's future L3 gravitational-wave mission.


3. New Astrophysics: Observing Gravitational Waves Across the EM Spectrum

Julie McEnery

About the lecture

Gravitational WavesGravitational wave observatories are providing us with a spectacular new window on some of the most extreme phenomena in the Universe. To put these new discoveries into context, we conduct coordinated observations with more traditional telescopes from radio to gamma-ray wavebands. Gravitational wave observations provide us with exquisite information about the nature and geometry of the compact objects responsible for producing the gravitational wave signal. Complementary electromagnetic observations can provide us with information about the environment around gravitational wave sources. This is critically important for placing gravitational wave sources within the broader astrophysical context. In this talk, I will describe what we are looking for and why, how we search for electromagnetic counterparts, progress to date and future prospects.

About the speaker

Julie McEneryJulie McEnery is the Project Scientist for the Fermi gamma-ray Space Telescope and an astrophysicist in the Astrophysics Science Division of NASA's Goddard Space Flight Center. She is an Adjunct Professor of Physics at the University of Maryland, Co-Director of the Joint Space Science Institute and a fellow of the American Physical Society.

Prior to joining NASA, Julie worked with ground-based gamma-ray telescopes, which detect radiation produced when gamma rays from deep space strike Earth's atmosphere. As a graduate student at University College Dublin, she used the Whipple Observatory to make very-high- energy observations of the active galaxy Markarian 421. She later worked at the University of Utah, the University of Wisconsin and Los Alamos National Laboratory on the Milagro gamma-ray observatory, primarily on gamma-ray burst (GRB) observations.

Active galaxies and GRBs remain her main science interests, but she also explores interesting topics in other areas of very high energy astrophysics.

←Previous Video | Next Video →
Lecture Series Index - Home